YET ANOTHER PROOF OF THE INFINITUDE OF PRIMES, I

MICHAEL COONS

Any good theorem should have several proofs, the more the better. —SIR MICHAEL ATIYAH [2, Page 223]

The following well-known result can be found in Book IX (Proposition 20) of Euclid's *Elements*. The proof given here is G. H. Hardy's taken (nearly verbatim) from *A Mathematician's Apology* [1, Page 93], which is very similar to Euclid's original proof.

Euclid's Theorem. There are infinitely many primes.

Hardy's proof of Euclid's Theorem. Let us suppose that the number of primes is finite, and that

 $2, 3, 5, \ldots, P$

is the complete series (so that P is the largest prime); and let us, on this hypothesis, consider the number Q defined by the formula

$$Q = (2 \cdot 3 \cdot 5 \cdots P) + 1.$$

It is plain that Q is not divisible by any of $2, 3, 5, \ldots, P$; for it leaves a remainder 1 when divided by any of these numbers. But Q must be divisible by one of $2, 3, 5, \ldots, P$ since these are all the primes, which gives us a contradiction. \Box

Euclid's proof (reflected above in a modernization given by Hardy) is surely one of the most elegant arguments in mathematics, and to use a phrase from Erdős, very well may be a "proof from the book." The proof is easily digested and leaves nothing in question about the fact that there are indeed infinitely many primes. The above proof demonstrates that a finite number of primes is not enough, but this leads us to ask the question: *how many numbers can one make with a finite number of primes*?

To answer this question a little more thoroughly, we offer an alternative proof of Euclid's result. But first some notation and a lemma.

Let $N_n(a_1, \ldots, a_n; x)$ represent the number of *n*-tuples (k_1, \ldots, k_n) such that $a_1^{k_1} \cdots a_n^{k_n} \leq x$. The following lemma should be readily apparent, but we have added the proof for completeness.

Lemma. Let a_1, a_2, \ldots, a_n be positive integers. Then for any x > 0 we have

(1) $N_n(a_1, \dots, a_n; x) \le N_{n-1}(a_1, \dots, a_{n-1}; x) \cdot N_1(a_n; x).$

Date: January 12, 2010.

The research of M. Coons is supported by a Fields–Ontario Fellowship.

Proof. The sum on the left-hand side of (1) is equal to the size of the set

$$A := \{ m \le x : m = a_1^{k_1} \cdots a_n^{k_n} \text{ for some } k_1, \dots, k_n \ge 0 \},\$$

and the product of sums on the right-hand side of (1) is equal to the size of the set

$$B := \{m : m = a_1^{k_1} \cdots a_n^{k_n} \text{ for some } k_1, \dots, k_n \ge 0$$

where both $a_1^{k_1} \cdots a_{n-1}^{k_{n-1}} \le x$ and $a_n^{k_n} \le x\}.$

Thus to prove the lemma, we need to show that the number of elements in A is at most the number of elements in B. Since both A and B are finite sets, it is enough to show that $A \subseteq B$.

To this end, let $m \in A$. Then there exist $k_1, \ldots, k_n \ge 0$ for which

$$m = a_1^{k_1} \cdots a_n^{k_n} \le x.$$

Note that also $m = a_1^{k_1} \cdots a_{n-1}^{k_{n-1}} \cdot a_n^{k_n}$, and that since $m \le x$, we have both

$$a_{n-1}^{k_{n-1}} \le \frac{x}{a_n^{k_n}} \le x$$

and

$$a_n^{k_n} \le \frac{x}{a_1^{k_1} \cdots a_{n-1}^{k_{n-1}}} \le x.$$

Thus $m \in B$, so that $A \subseteq B$ and the lemma is proved.

Our proof of Euclid's Theorem. Let p_1, p_2, \ldots, p_n be distinct primes and consider

 $N_n(p_1,\ldots,p_n;x).$

By applying the lemma exactly n-1 times we have

$$N_n(p_1, \dots, p_n; x) \le N_1(p_1; x) \cdot N_1(p_2; x) \cdots N_1(p_n; x)$$

For i = 1, 2, ..., n, we have that $p_i \ge 2$ so that $\log p_i \ge \log 2$. Thus

$$N_1(p_i; x) \le \frac{\log x}{\log p_i} + 1 \le \frac{\log x}{\log 2} + 1.$$

Putting this together gives for $x \ge e$ that

(2)
$$N_n(p_1,\ldots,p_n;x) \le \left(\frac{\log x}{\log 2} + 1\right)^n \le \left(\frac{2}{\log 2}\right)^n \log^n x.$$

If there were finitely many primes, say n, then since there are no less than x - 1 positive integers less than x, we would have to have

$$x - 1 \le N_n(p_1, \dots, p_n; x)$$

gives for all $x \ge e$ that

(3)
$$0 \le \left(\frac{2}{\log 2}\right)^n \log^n x - x + 1,$$

which cannot happen for x large enough. We can use first-year calculus to show this; we need only that eventually the inequality (3) fails. To this end, note that

(4)
$$\lim_{x \to \infty} \frac{d}{dx} \left\{ \left(\frac{2}{\log 2}\right)^n \log^n x - x + 1 \right\} \\ = \lim_{x \to \infty} \left\{ (n-1) \left(\frac{2}{\log 2}\right)^n \frac{\log^{n-1} x}{x} - 1 \right\} = -1,$$

since for any integer k we have $\lim_{x\to\infty} \frac{\log^k x}{x} = 0$. Thus eventually (3) fails and we have a contradiction, and so there must be infinitely many primes.

Our proof is certainly longer than Euclid's and many others (see [3, Chap. 1] for a collection of short proofs), though we think it has merit in other ways. For example, it teaches a student to count a little, and it is appropriate for a first-year calculus course.

Remark. We note here that our proof bears similarities to that of Auric from 1915. See Ribenboim [3, Page 9] for the details of Auric's proof.

References

- 1. G. H. Hardy, A mathematician's apology, Canto, Cambridge University Press, Cambridge, 1992, With a foreword by C. P. Snow, Reprint of the 1967 edition.
- 2. Martin Raussen and Christian Skau, Interview with Michael Atiyah and Isadore Singer, Notices Amer. Math. Soc. 52 (2005), no. 2, 225-233.
- 3. Paulo Ribenboim, The new book of prime number records, Springer-Verlag, New York, 1996.

UNIVERSITY OF WATERLOO, DEPT. OF PURE MATHEMATICS, WATERLOO, ONTARIO, N2L 3G1 *E-mail address*: mcoons@math.uwaterloo.ca