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Any good theorem should have several proofs, the more the better.
—Sir Michael Atiyah [2, Page 223]

The following well–known result can be found in Book IX (Proposition 20) of
Euclid’s Elements. The proof given here is G. H. Hardy’s taken (nearly verbatim)
from A Mathematician’s Apology [1, Page 93], which is very similar to Euclid’s
original proof.

Euclid’s Theorem. There are infinitely many primes.

Hardy’s proof of Euclid’s Theorem. Let us suppose that the number of primes is
finite, and that

2, 3, 5, . . . , P

is the complete series (so that P is the largest prime); and let us, on this hypothesis,
consider the number Q defined by the formula

Q = (2 · 3 · 5 · · ·P ) + 1.

It is plain that Q is not divisible by any of 2, 3, 5, . . . , P ; for it leaves a remainder
1 when divided by any of these numbers. But Q must be divisible by one of
2, 3, 5, . . . , P since these are all the primes, which gives us a contradiction. �

Euclid’s proof (reflected above in a modernization given by Hardy) is surely one
of the most elegant arguments in mathematics, and to use a phrase from Erdős,
very well may be a “proof from the book.” The proof is easily digested and leaves
nothing in question about the fact that there are indeed infinitely many primes.
The above proof demonstrates that a finite number of primes is not enough, but
this leads us to ask the question: how many numbers can one make with a finite
number of primes?

To answer this question a little more thoroughly, we offer an alternative proof of
Euclid’s result. But first some notation and a lemma.

Let Nn(a1, . . . , an; x) represent the number of n–tuples (k1, . . . , kn) such that
ak1
1 · · · akn

n ≤ x. The following lemma should be readily apparent, but we have
added the proof for completeness.

Lemma. Let a1, a2, . . . , an be positive integers. Then for any x > 0 we have

(1) Nn(a1, . . . , an; x) ≤ Nn−1(a1, . . . , an−1; x) ·N1(an; x).
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Proof. The sum on the left–hand side of (1) is equal to the size of the set

A := {m ≤ x : m = ak1
1 · · · akn

n for some k1, . . . , kn ≥ 0},
and the product of sums on the right–hand side of (1) is equal to the size of the set

B := {m : m = ak1
1 · · · akn

n for some k1, . . . , kn ≥ 0

where both ak1
1 · · · a

kn−1
n−1 ≤ x and akn

n ≤ x}.
Thus to prove the lemma, we need to show that the number of elements in A is at
most the number of elements in B. Since both A and B are finite sets, it is enough
to show that A ⊆ B.

To this end, let m ∈ A. Then there exist k1, . . . , kn ≥ 0 for which

m = ak1
1 · · · akn

n ≤ x.

Note that also m = ak1
1 · · · a

kn−1
n−1 · akn

n , and that since m ≤ x, we have both

a
kn−1
n−1 ≤

x

akn
n

≤ x

and
akn

n ≤
x

ak1
1 · · · a

kn−1
n−1

≤ x.

Thus m ∈ B, so that A ⊆ B and the lemma is proved. �

Our proof of Euclid’s Theorem. Let p1, p2, . . . , pn be distinct primes and consider

Nn(p1, . . . , pn; x).

By applying the lemma exactly n− 1 times we have

Nn(p1, . . . , pn; x) ≤ N1(p1; x) ·N1(p2; x) · · ·N1(pn; x).

For i = 1, 2, . . . , n, we have that pi ≥ 2 so that log pi ≥ log 2. Thus

N1(pi; x) ≤ log x

log pi
+ 1 ≤ log x

log 2
+ 1.

Putting this together gives for x ≥ e that

(2) Nn(p1, . . . , pn; x) ≤
(

log x

log 2
+ 1

)n

≤
(

2
log 2

)n

logn x.

If there were finitely many primes, say n, then since there are no less than x− 1
positive integers less than x, we would have to have

x− 1 ≤ Nn(p1, . . . , pn; x)

gives for all x ≥ e that

(3) 0 ≤
(

2
log 2

)n

logn x− x + 1,

which cannot happen for x large enough. We can use first–year calculus to show
this; we need only that eventually the inequality (3) fails. To this end, note that

(4) lim
x→∞

d

dx

{(
2

log 2

)n

logn x− x + 1
}

= lim
x→∞

{
(n− 1)

(
2

log 2

)n logn−1 x

x
− 1

}
= −1,
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since for any integer k we have limx→∞
logk x

x = 0.
Thus eventually (3) fails and we have a contradiction, and so there must be

infinitely many primes. �

Our proof is certainly longer than Euclid’s and many others (see [3, Chap. 1]
for a collection of short proofs), though we think it has merit in other ways. For
example, it teaches a student to count a little, and it is appropriate for a first–year
calculus course.

Remark. We note here that our proof bears similarities to that of Auric from
1915. See Ribenboim [3, Page 9] for the details of Auric’s proof.
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